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A complete analysis of the one-dimensional vibratory instability of planar flames of 
premixed gases propagating in tubes is provided. The driving mechanism results 
from unsteady coupling between flame structure and acoustic waves through 
temperature fluctuations. In certain conditions, the strength of such an instability 
will be proved to be sufficiently strong to produce large-amplitude fluctuations as 
soon as the flame has travelled a distance of the order of the acoustic wavelength. 
Stability limits and total amplification of an initial perturbation are computed in the 
framework of the simple flame mode of a one-step exothermic reaction governed by 
an Arrhenius law with an activation energy much larger than the thermal energy. 
Diffusive and thermal effects within the flame are included with a Lewis number 
different from unity. Damping mechanisms associated with viscous and thermal 
dissipation a t  the walls, as well as with loss of acoustic energy by sound radiation 
from the open end of the tube, are retained. In  ordinary conditions, for a reactive 
mixture with an effective Lewis number close to unity, the predicted instability is 
weak. In the framework of the simplified flame model used here, islands of strong 
instabilities are predicted to occur a t  low Mach numbers for Lewis numbers larger 
than unity. 

1. Introduction 
In  one of the earliest photographic studies of flames, Mallard & Le Chatelier (1883) 

observed that a premixed gas flame propagating from the open to the closed end of 
a tube started to oscillate. This oscillation is associated with a spontaneous increase 
of the acoustic energy in the tube. The acoustic vibration is longitudinal, with a 
frequency close to an eigenmode of the tube. In  general, the corresponding acoustic 
time has the same order of magnitude as the transit time of the flame. The details of 
the process depend on the nature and the equivalence ratio of the mixture and on the 
dimensions of the tube. This suggests the existence of a coupling mechanism between 
the flame structure and acoustic modes of the tube. Such a phenomenon is of 
fundamental importance since it shows how compressibility effects can spontaneously 
develop from an initially isobaric structure, the deflagration wave. Thus it may play 
a role in the process of transition to compressible combustion waves such as 
detonations, or in knocking in engines, where strong pressure disturbances develop. 

This vibratory instability is related to the more general field of thermoacoustic 
instabilities which appear in systems in which a localized heat source interacts with 
acoustic vibrations. A general criterion for the appearance of such instabilities was 
developed very early by Rayleigh (1878) : when heat is released locally and 
periodically in a gaseous medium, an acoustic oscillation is amplified if the  oscillating 
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components of pressure and heat flux are in phase. For reviews on this subject, see 
Putnam (1964) and Strehlow (1979). 

The determination of the stability limits of the vibratory instability of flames 
remains an open question since the driving mechanism which is at the origin of the 
variations of the heat flux released by the freely propagating flame is still unclear. Up 
to now, three kinds of explanations have been proposed. Dunlap (1950) suggests that 
the vibrations could be maintained by the effect of pressure and temperature of 
incoming acoustic waves on the burning velocity. Kaskan (1953) proposes that when 
the flame edge penetrates into the thin acoustic boundary layer, flame area and thus 
heat flux fluctuate in the boundary layer since the flame front, disk shaped and 
planar in the centre part of the tube, oscillates around its mean position while the 
edge remains at rest. Markstein (1964) assumes that heat flux variations are due to 
variations of flame area by an acceleration instability, this last mechanism being 
certainly present when flames are cellular. 

When planar propagation is considered, as is the case in Kaskan's (1953) 
experiments, only the first two mechanisms need be considered. The first mechanism 
is usually rejected since the effect of pressure variation on burning velocity is very 
weak. Such an argument is not fully convincing for two reasons. First of all, a 
detailed computation of the transfer function taking into account the flame structure 
to relate the jump of the acoustic velocity field across the flame to the pressure 
fluctuation, is still lacking. Thus, a correct evaluation of the magnitude of the 
corresponding effect has not yet been carried out. Secondly, damping effects which 
dissipate the acoustic energy, i.e. losses by sound emission a t  the open end of the tube 
and by viscous friction or by heat conduction to  the tube walls are very weak too. 
Thus it is difficult to say which effect (destabilizing or stabilizing) will dominate 
without a detailed analysis. 

The scope of this paper is to analyse in detail the stability limits of the vibratory 
instability for planar flames propagating in tubes, when the origin of heat flux 
variations comes from time-dependent modifications of the flame structure which are 
induced by acoustic waves. It will be shown that such an effect may be quantitatively 
sufficient to overcome the damping effects. Moreover, when the instability develops, 
its typical growth rate will be proved in some cases to  be sufficiently strong to 
produce large-amplitude vibrations as soon as the flame has travelled a distance of 
the order of an acoustic wavelength. Thus, besides the well-known hydrodynamical 
and diffusive instabilities considered by Pel& and Clavin (1982), a new type of 
intrinsic instability for planar flames propagating in tubes is pointed out and studied 
by the present analysis. 

In  the following section of the paper, the physical concepts used in the analysis are 
presented with a rough analysis based only on order of magnitude estimates. The 
model and the method which are used to  solve the problem are presented in a third 
section. In a fourth section, an analysis of the response of the flame structure to  an 
acoustic wave is carried out for a finite value of the gas expansion parameter. This 
result extends the one obtained previously by Van Harten, Kapila & Matkowsky 
(1984) in the limiting case of a negligibly small gas expansion parameter. Such an 
approximation cannot be used here because it corresponds to a limit where the 
driving mechanism of the vibratory instability vanishes. Then, the corresponding 
transfer function of the freely propagating flame is obtained in the same spirit as in 
the cases of a flame anchored to a grid (MacIntosh 1986) or of the Rijke tube where 
a hot grid is placed in a uniform flow (Nicoli & Pel& 1989). The acoustic problem is 
solved in a fifth section by using the above-mentioned transfer function. The 
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stability limits of the vibratory instability are first investigated for a flame which is 
assumed to be kept at a fixed position in the tube. The corresponding linear growth 
rate is obtained in the unstable domains. 

2. Physical considerations 
The Rayleigh criterion for instability (Rayleigh 1878) is easily derived in the 

framework of a simple model for a non-steady one-dimensional flow in a tube in 
which the heat release is concentrated in a region much smaller than the acoustic 
wavelength (Strehlow 1979). In such a case, the region of heat release may be 
considered as a discontinuity of the flow velocity. When damping mechanisms 
(viscosity, etc.) are neglected, the time derivative of the total energy per unit cross- 
sectional area, &', stored in the acoustic modes of the tube is related to the jump of 
the velocity fluctuation Su across this thin zone: 

_-  - Sp(Su,-Su,). d b  
dt 

Here Sp is the pressure fluctuation, Su, and Su, the velocity fluctuations a t  the 
discontinuity on the downstream and upstream sides respectively. The jump 
(Su,-Su,) is a quantity that fluctuates with the acoustic mode of the tube. Because 
of the gas expansion, this jump is, in most cases, proportional to the fluctuation of 
the rate of heat release per unit cross-sectional area, Sq, with a positive dimensionless 
coefficient. In  such a case (2.1) shows that the instability appears (dbldt > 0) as soon 
as Sq is in phase with Sp, i.e. when the local addition is positively correlated with the 
available pressure fluctuation. The main problem in each particular case is to 
determine the relation linking Sq to Sp or more directly (Su,-Su,) to Sp. The so- 
called transfer function characterizes the response of the inner structure of the heat 
release region to an acoustic perturbation. The purpose of this section is to discuss 
the orders of magnitude of these phenomena in the case where the thin zone of heat 
release is a premixed gas flame. 

In  the isobaric approximation, the structure of a planar premixed flame is 
governed by a system of reaction-diffusion equations for the temperature and species 
mass fraction. The main parameters characterizing the steady flame structure are the 
flame temperature T,, the laminar flame speed U,  and the transit time T ~ .  The flame 
thickness is defined by d = 7t U, and one has the following order of magnitude 
estimates : 

and where D, is the thermal diffusivity of the gaseous mixture a t  temperature T,. The 
heat flux q released in this steady regime of combustion is q = p1 U, C,(T, - q), where 
C, is the specific heat of the gaseous mixture, and Tl and p1 are the temperature and 
the density of the fresh mixture. The study of the flame structure provides us with 
the expression of the transit time 7t and, thus, of U,, d and q in terms of the physico- 
chemical properties of the reactive mixture, which are mainly characterized by the 
typical diffusion coefficient, D,, and the reaction time 7, of the exothermic reaction 
defined at the burned gas temperature T,. This characteristic time is related to the 
microscopic collision time 7, a t  the same conditions through an Arrhenius factor, 

7, = 7, exp (EIWT,), (2.3) 
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where E is the activation energy of the reaction. The essential characteristic of a 
combustion process is the large value of the activation energy compared to  the 
thermal one : E/WT, 9 1. As a consequence the laminar flame speed and, thus, the 
heat flux are very sensitive to temperature variations. This sensitivity is 
characterized by a large dimensionless number /3 % 1,  called the Zel'dovich number. 
A small relative variation of the flame temperature induces a modification of U ,  and 
q of order unity: 

O(1) and %=0(1). 
q 

( 2 . 4 ~ )  

Typical orders of magnitude are: 

p = 10, rt x s, U, x 30 cm/s, d x 3 x lo-' cm, M x (2.4b) 

where M is the Mach number based on the flame speed U, and a characteristic sound 
speed c1 of the gaseous fresh mixture, M = U,/c, .  

The oscillatory instability of planar flames propagating in tubes was studied 
experimentally by Kaskan ( 1953) who attributed the instability mechanism to the 
heat flux variation inside the viscous layer of thickness h a t  the edge of the flame 
front. When the Prandtl number is of order unity, the order of magnitude of h may 
be written as h M (D, rJ4, where 1/r, is the acoustic frequency. When 7, is sufficiently 
small, viscous effects are located in a thin boundary layer, h < R, where R is the 
radius of the tube. This is the case of the experiments of Kaskan in which the flame 
front remains planar everywhere except in the boundary layer. The local two- 
dimensional character of the boundary layer prevents a detailed analysis of the 
variation of the heat flux a t  the edge of the flame. Moreover, how such a local 
phenomenon could influence the bulk of the flow to be coupled with acoustic 
oscillatory modes as described by (2.1) is not explained. Kaskan postulated that the 
heat flux variation is associated with the modification of the area of the flame inside 
the boundary layer. When the dead space between the flame and the wall is larger 
than the thickness of the viscous boundary layer the corresponding heat flux 
variation disappears and Kaskan concludes that the instability mechanism dies out. 
As the dead space is of the same order of magnitude as the flame thickness d,  the 
approximative instability criterion proposed by Kaskan may be written as r, < rt. 
We shall show here that the coupling between the planar flame structure and the 
longitudinal acoustic modes produces another instability mechanism which, a priori, 
cannot be neglected in particular a t  high frequency in the domain where the 
mechanism described by Kaskan disappears. 

In  a case of a flame anchored to a grid, the flame temperature T,  depends on both 
the heat of reaction and the heat losses to the grid. This last mechanism depends on 
the position of the reaction zone relative to the fixed grid. The fluctuations of flow 
velocity associated with the acoustic wave induce an oscillation in the position of the 
reaction zone and thus a fluctuation of T,. The resulting fluctuation in the heat 
release leads to a strong instability, studied by Bailey (1957). The corresponding 
transfer function has been computed more recently by McIntosh (1986). 

Neither of the two above-mentioned mechanisms can be invoked for planar flames 
propagating freely in a tube when the dead space is larger than the thickness of the 
viscous boundary layer. The problem is described by one-dimensional reaction- 
diffusion equations which are translationally invariant and which do not include 
any inertial effects in the response of the flame to homogeneous fluctuations of the 
velocity field. Thus, the interaction between such a flame structure and acoustic 
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modes cannot be treated in the strict isobaric approximation. One has to consider the 
pressure effects appearing in the conservation equation of enthalpy. The relative 
variation of temperature and pressure in an acoustic mode are of the same order of 
magnitude : 

where Su is the typical amplitude of the velocity fluctuation of the acoustic mode. 
According to (2 .4a) ,  this temperature fluctuation induces a relative modification of 
the flame structure and of the heat release of the order pM(Su/U,). For a relative gas 
expansion across the flame or order unity, one may expect the same order of 
magnitude for the relative velocity jump across the flame to give: 

The energy per unit cross-sectional area, 8, which is stored in the acoustic mode of 
the tube is of order (7,&uSp). Thus, in the case of an unstable configuration, the 
CharActeristic order of magnitude of the growth rate of such an acoustic instability, 
1/7ins = b-'CIb/CIt, would be, according to (2.1) and (2.6) : 

1/7ins (PM)/7a, (2.7) 

where because of the very subsonic character of the flame propagation, the 
dimensionless coefficient pM is a small number (pM x lo-,, see (2 .4b)) .  Nevertheless 
the cumulative effect when the flame propagates in a tube could be very strong. For 
example if the instability criterion concerns lengths in the tube which are of the 
same order as the acoustic wavelength A z c17a,  the residence time t,,, which is 
defined as the time spent by the flame in the unstable region, is very long compared 
with the acoustic time: t,,, = A / U L  x 7, /M. Thus, the very small number M 
appearing in (2.7) is cancelled in the total growth rate to give: tres/7ins x p. As a 
consequence, a perturbation of the flame position with an initial amplitude A ,  is 
expected to reach a final amplitude A, which is increased by a very large factor 

A,/A,  = expp. (2.8) 
exP P? 

Nevertheless, because of the smallness of the factor pM in the right-hand side of 
(2 .7) ,  one must make sure that the damping mechanisms do not dominate the 
instability mechanism. A precise analysis of this topic will determine the stability 
limits of the flame propagating in a tube presented in $5.  Here, we shall consider only 
the order of magnitude of these phenomena. According to the presentation by 
Landau & Lifshitz (1959) of KirchhoPs results concerning the acoustic damping 
associated with viscosity and heat transfer a t  the wall, the corresponding damping 
rate may be evaluated as follows. For a Prandtl number of order unity, the energy 
dissipated in the boundary layer per unit time and per unit tube is of order of 
pD2(8u)2R/h with h = (D27,)f. The acoustic energy which is stored in the acoustic 
mode may be written per unit tube length as ~ ( S U ) ~ R , .  The corresponding damping 
rate is 

l/'raam w (Dz/R27,)i. 

By rewriting the right-hand side of the above equation as (D2 7, /A2);  (A/R)/7,  and 
using A w c 1 7 ,  with (2 .2)  written in the form D,  x U2L7t, this damping rate is 
expressed as 

( 2 . 9 ~ )  
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Another damping mechanism is due to the escape of energy from the vessel by sound 
radiation into the external medium from the open end of the tube, the order of 
magnitude of the corresponding damping rate is (see Rayleigh 1945) ; 

1/Tdarn x (R/A)2/Ta* (2.9b) 

Notice that the dimensionless factors ( A / R ) M  and (RIA)' on the right-hand side of 
(2.9) are small numbers which may be of the same order of magnitude as /?M on the 
right-hand side of (2.7). Taking into account that because of resonance phenomena, 
the instability is expected to be stronger for an acoustic time T,  of the same order of 
magnitude as the transit time rt across the flame, the comparison between the growth 
rate (2.7) and the damping rates (2.9) shows that the instability may be produced in 
the following conditions : 

the first and second inequalities ensuring that the acoustic instability is stronger 
than the dissipation at  the walls and the sound emitted from the open end 
respectively. According to (2.4 b ) ,  the dimensionless numbers 1/p and (pM); appearing 
in (2.10) are of a similar order of magnitude, lo-'. Thus, according to this rough 
analysis based on orders of magnitude, an intrinsic instability of planar flame fronts 
may be expected to occur for sufficiently fast flames, M 2 (1//3)3 x propagating 
in tubes with a typical aspect ratio. A definite answer may be provided only by a 
detailed analysis of this phenomenon, which is presented in the following sections of 
the paper. 

rt x T, 1//? d RIA < (/?M)i, (2.10) 

3. Model and method 
As we are interested in an intrinsic instability resulting from a coupling of the 

longitudinal acoustic modes with the internal structure of a planar front of a 
premixed flame propagating freely in a tube, the simplest model to consider is a one- 
dimensional reactive gaseous mixture. As is well known, premixed gas flames 
experience the Darrieus-Landau instability mechanism when wrinkled fronts are 
considered. The present analysis is limited to planar flame fronts which are relatively 
stable to those diffusive and hydrodynamical effects. The corresponding stability 
domains have been determined analytically by Pel& & Clavin (l982), experimentally 
by Quinard, Searby & Boyer (1985) and numerically by Jackson & Kapila (1986). 

The damping process associated with the wall effects are neglected in a first step. 
Viscous effects at  the walls and sound emitted from the open end of the tube will be 
considered in 9 5. The two-dimensional edge effects associated with the penetration 
of the flame into the boundary layers described by Kaskan (1953) are also neglected 
here. Moreover, we consider the simplest chemical model of a flame based on a one- 
step exothermic and irreversible decomposition of a single reactant with kinetics 
governed by an Arrhenius law. The activation energy will be supposed much larger 
than the thermal energy. The starting point of the analysis is the conservation 
equations of mass, momentum and energy and the equation for the mass fraction of 
the reactant : 

( 3 . 1 ~ )  

(3.lb) 
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(3 . ld)  

Here rj and 7' are the first and second coefficients of dynamical viscosity, h the heat 
conductivity, C, the specific heat of the reactive mixture which is assumed to be 
constant for simplicity. D is the molecular diffusion coefficient and $ the reduced 
mass fraction of the reactant which is assumed to be consumed by a one-step 
exothermic reaction ($ = 1 in the fresh mixture, $ = 0 in the burned gases). Q is the 
heat of reaction per unit mass of fresh mixture and W the reaction rate: 

w = (p/7,)  $" exp ( - E / 9 T ) ,  (3.1 e )  

n is the order of reaction, 7, is proportional to the microscopic collision time. The 
reactive mixture is assumed to satisfy the ideal gas law: 

P = (@Id) PT ( 3 . l f )  

where 9 is the constant of perfect gas and Af the molecular weight of the reactive 
mixture which is assumed to be constant for simplicity. 

When compressibility effects associated with pressure variations in the energy 
equation ( 3 . 1 ~ )  are neglected, the system of equations (3.1) may be reduced to a 
system of the 'reaction4iffusion ' type. For this case, the travelling wave solution 
was first obtained by Zel'dovich & Frank-Kamenetskii (1938) for a large value of the 
dimensionless activation energy, E/9'T, 9 1 .  The large parameter to be used is more 
precisely the Zel'dovich number defined as /3 = E( T, - q)/9q, where and T, are 
the temperature in the burned and fresh gaseous mixture. In  the asymptotic limit 
p+ co, the flame structure is made up of two different lengthscales : an upstream non- 
reactive preheated zone of thickness d followed by a thin reaction-diffusion region 
of thickness d/P.  The analysis of the former region is easy owing to its linear 
character. The analysis of the inner reaction-diffusion layer yields the heat flux 
produced by the exothermic reaction. Then, the final result is obtained by matching 
the two regions to give for a reaction of order unity: 

7t = ($/2Le) 7r and uL = (PdP, )  (B!2/7$3 d = f&/&) (DzTt)', (3.2) 

where Le is the Lewis number defined as the ratio of thermal and molecular 
diffusivities, Le = h/pC, D .  The isobaric approximation appears to be well justified 
because, according to the order of magnitude of the sound speed in the burned 
mixture, c2 w (D2/7,)f, the Mach number, UL/c2 ,  computed from (3.2) and (2.3), is a 
small number for ordinary values of the activation energy. More precisely, let 
M = U J c ,  be the Mach number defined in the fresh mixture, then (3.2) yields 

M w P ' e x p  ( - E/29TJ. (3.3) 

I n  order to describe the phenomena leading to the strong instability (2.8) through 
the cumulative mechanism presented in the previous section, we proceed as follows. 
Equations (3.1) are first reduced by using the characteristic length and time, d and 
7t, of the basic steady travelling wave solution: the isobaric planar flame. Then, the 
time-dependent solution of the non-dimensionalized version of (3.1) is considered in 
the asymptotic limit p+co but with the small number /3M considered mathe- 
matically as of order unity even if this quantity is transcendentally small according 
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to (3.3). Moreover, the driving mechanism of the vibratory instability having an 
intensity proportional to the gas expansion coefficient which is close to  unity for 
ordinary flame conditions, (pl - p 2 ) / p l  x (T,  - q)/q x 0.8, this quantity will be 
considered as a non-zero coefficient in the present analysis : 

6 E PM = O(1) and (p,-p2)/p1 = 0(1), in the limit /I+ 00. ( 3 . 4 ~ )  

As one is concerned with acoustic times never much shorter than the transit time, 
the reduced transient terms are here considered as quantities of order unity (rt/7, = 
O( 1)) .  Moreover, acoustic phenomena with wavelengths A involve lengthscales which 
are much larger than the flame thickness, A/d  G ( A / c )  (UJd)  ( c / U L )  = O(M-'), 

A / d  = (7,/rt)M-l with (T,/TJ = O(1). (3.4b) 

In  the limit P + w ,  the reaction is still concentrated in a thin quasi-steady 
reaction-diffusion region of thickness d /P  which may be properly treated as a 
discontinuity. Then, a similar method to the one introduced by Zel'dovich and 
Frank-Kamenestkii (1938) can be used to  solve (3 .1)  in the limit (3 .4~4,  b).  

In order to keep gas expansion effects and to get rid of the variable coefficient in 
the time-dependent term, the following dimensionless mass-weighted coordinate is 
introduced as in the work of McIntosh (1986) : 

where a(t)  is the position of the reaction-diffusion sheet : 

a a 
- --f d-'o - 
ax a t '  

a a  a a 
- + u--+ T;'-+ T ; ~  m(T) - 
at ax aT a t '  

( 3 . 5 ~ )  

(3.5b) 

where r is the reduced time 7 = t / T t ,  ~ ( 6 ,  T )  = p(x,  t ) / p l  the reduced density and m(T) 

the reduced mass flux a t  the reaction sheet : m(7) = p(z = a,  t )  {u(x = a, t )  -da/dt}/ 
p1 U,. Outside the reaction-diffusion region, the conservation equations (3.1) are 
written in the dimensionless form as 

( 3 . 6 ~ )  

(3.6b)  

a* al// a21// 
a7 a t  at2 -+m--(l/Le)--- = 0, (3 .6d)  

with Le = A/pC, D and with the following boundary conditions : 

fresh gases, t+-a: + = I ,  e = o ( M ) ,  (3.6e) 

burned gases, 6 j+a: p=o,  e =  i + o ( ~ ) .  ( 3 W )  

Here, 0 is the reduced temperature 8 3 (T-Tl) / (T,-q)  with T,-q = Q/C,, Pr = 
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(y +$) Cp/h  is the Prandtl number, tl = u /U,  is the reduced flow velocity, and n = 
p / p ,  c1 U, is a non-dimensional pressure obtained by scaling the pressure by the 
acoustic pressure corresponding to  an amplitude Su = U,. As the fresh mixture is 
considered as a perfect gas, the sound speed is given by c: 3 (Cp/C, )  (W/&) TI and 
the coefficient a appearing in the right-hand side of (3 .6c) ,  is defined as 

a = [((Cp-C,)/C,) ( ~ l / ( % - - - W ) I .  ( 3 . W  

All the diffusion coeffients D in (3.6c, d )  have been assumed to verify p2D = constant 
for simplicity. Another law could have been used but would not have changed the 
essential features of the final results (Nicoli & Pel& 1989). The reduced form of the 
ideal gas law ( 3 . l f )  is 

(3.6h) 

with by definition 6n = n-nl where n1 = p , /p ,  c1 U, and p ,  = (W/&)p, 
initial pressure of the fresh mixture. 

and mass fraction $ are statisfied : 

is the 

At the reaction sheet, the ordinary jump relations for the reduced temperature 0 

(3 .7a)  

(3.7b) 

0, = eic-o+ = ei,,,-, @I,=+ = = 0, (3.7c) 

pressure and velocity are continuous a t  the reaction sheet located a t  E = 0. 
As is well known, the analysis requires P(Le- 1) = O(1) (see Joulin & Clavin 1979 

for example). The downstream and upstream sides of the reaction sheet are denoted 
by = O +  and E = 0- respectively. Equation (3 .7a)  expressing the total enthalpy 
conservation across the reaction region, is valid at the two first leading orders ,in the 
asymptotic analysis. I n  (3.7b) expressing the kinetic law governing the heat flux 
released by the exothermic reaction, we have only retained the flame temperature 
modification (#, $; 1). The pressure variation of the pre-exponential factor of the 
reaction rate is neglected because its effect only appears a t  the next order. 

It is sufficient for the following to determine the stationary solution of the freely 
propagating flame at the zeroth order in an expansion at small Mach number. As 
explained in $2, the relative amplitude of the perturbations of the flame structure 
due to the incoming acoustic wave are proportional to PM, thus much larger than the 
first correction to the stationary solution due to compressibility effects which are of 
order of magnitude PM2. This is clearly exhibited by the reduced form (3.6b) of the 
momentum conservation equation : in the acoustic region one has according to (3 .4b) ,  
E = O(M-l) ,  a/a[ = O(M)  in such a way that Sn = 0(1), but in the preheated region 
of the flame one has 6 = 0(1), a/a( = 0(1) and thus Sn = O(M) (for details see Nicoli 
& Pelcd 1989). Thus, one can neglect the pressure gradient inside the flame as well 
as the dissipation by viscous friction in the energy equation. The profiles of 
temperature and concentration of the steady travelling wave solution are obtained 
a t  leading order by solving (3.6c, d )  with M = 0 and using the boundary conditions 
( 3 . 6 e , f )  and the jump conditions (3 .7) ,  to  give 

C < O :  G=expE; [ > o :  i7= I ,  ( 3 . 8 ~ )  

E < o :  $ =  l-exp(LeC); g > O :  $ = O ;  (3.8b) 
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the density and velocity profiles are given by (3.6h) and ( 3 . 6 ~ ) :  
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(3.8c) 

The expression of the reduced mass flux, m = 1, results from the choice of the non- 
dimensionalization by length- and timescales (3.2) of the unperturbed planar flame. 

4. The transfer function 
4.1. Scaling and regions 

When a sound wave of wavelength A and frequency w ( A  w L and w w 117, with 
7, = L/c, ,  where L is the length of the tube) interacts with a premixed gas flame, 
the profiles of physical quantities are perturbed inside the flame and the flow velocity 
varies on two different lengthscales. Such a scale separation a t  small Mach number, 
which was mentioned at the end of the previous section, has already been largely 
discussed by Nicoli & Pelc6 (1989) in the case of the Rijke tube where the flame is 
replaced by a hot grid. This question is discussed here only briefly. For ~7~ of order 
unity (which is the case in experiments), and according to (3.4b), the flame thickness 
d becomes very small compared to A when the Mach number is small. Two distinct 
regions appear. 

The acoustic region on the lengthscale of the wavelength, A ,  6 = O(M-l),  where 
perturbations are simply acoustic waves, 

6n = o(i), atC = o(i) but 68 = o(M). (4.1) 

The flame region on the lengthscale d,  6 = O ( l ) ,  where the pressure has to be 
considered as uniform but time dependent and where 

se = o(i), su = o(i) but an = o(q .  (4.2) 

In  the acoustic regions, the perturbations correspond to acoustic waves whose 
pressure and velocity fields may be easily computed in the linear approximation (see 
$5.1). A t  the scale of the acoustic wavelength, the flame appears as a hydrodynamical 
discontinuity for the acoustic flow velocity as well as for the gas density and 
temperature. A full determination of the acoustic field in the tube necessitates 
knowing the relation linking the pressure fluctuation a t  the flame front with the 
jump across the flame of the acoustic flow velocity. Such a transfer function is 
provided by an asymptotic analysis of the perturbed flame structure in the limit 
(3.4a, b) .  

4.2. The transfer function 
The analysis starts with the linear decomposition of the reduced temperature and 
concentration profiles : 8 = g(6) + 68, $ = $(6)  +a$, where the unperturbed solutions 
$and $ are given by (3.8a, b )  and where the perturbations are decomposed in Fourier 
modes, 68 = Sl(6) exp (iw7), 6$ = @'(() exp (iw7). Here w is the reduced acoustic 
frequency, w = ~ 7 ~ .  In  a similar way one introduces 6n = n' exp (iw7) for the reduced 
perturbation of the acoustic pressure at the flame and m = 1 +m'exp (iw7) for the 
modified reduced combustion rate. As usual, the leading order of the modification of 
the flame structure is given by the first order 1/p in the asymptotic expansion of the 
reduced temperature perturbation 68. Thus, according to (3.4a), the reduced 
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linearized equations governing the perturbation of the flame structure are obtained 
from (3.6c, d )  in the following form which is valid up to order 1/p: 

(4.3a) 

(4.3 b) 

At the reaction zone, 6 = 0, the linearized boundary conditions (3.7) apply in the 
form 

Temperature, mass fraction 

(4.4a) 

(4.4b) 

of the reactant, and flow velocity disturbances are 
continuous a t  the reaction sheet a t  6 = 0. Integration of (4.3a) and (4.3b) leads to 

m' a M  
1w r 

8' = B exp (x-( 1) 5) + ( T!/T,) a M d ,  

v = Cexp (x+(Le) 6) + _Le exp (Leg) ; 

5 < 0 : 8' = A exp (x+( 1) 6) - exp 5 + : n', (4 .54 

6 > 0 : 

[ < 0 : 

(4.5b) 

= 0, ( 4 . 5 ~ )  
m' 6 > 0 : 
1W 

where 

The temperature and concentration profiles (4.5~3, b,  c) match the upstream 
(g+- co) and downstream (C+ + co) non-reactive acoustic zones where the tem- 
perature fluctuations correspond to  the isentropic compression by acoustic waves. 
Coefficients A ,  B can be expressed in terms of O[(t = 0). Coefficient C is determined 
by the boundary condition (3.7c), v(f; = 0) = 0. Then, Oi(6 = 0) and the perturbed 
mass flow rate m' are determined by the two jump conditions (4.4) a t  the reaction 
sheet to give 

where according to ( 3 . 4 ~ )  PM is considered as a quantity of order unity in the limit 

This result generalizes the one previously obtained by Van Harten et al. (1984, see 
their equation (67)) which corresponds to  (4.7) in the limit of a small gas expansion, 

The denominator of (4.7) corresponds to the dispersion relation of the planar flame 
stability. A resonance phenomenon appears at w = w, when P(Le - 1) approaches 

p+co. 

(P1--PA/P1= (T,-T,)/T,+-O butMPT,I(T,-V = O(1). 
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from below the critical value /?(Lee- 1 )  = 4(1+ 1/3) corresponding to a Hopf 
bifurcation a t  which the planar flame becomes unstable under diffusive-thermal 
effects with a natural oscillatory frequency w, = O(1).  Such an instability was 
pointed out by Sivashinsky (1977) and Joulin & Clavin (1979) in the framework of 
the diffusive-thermal model (p, - p z ) / p l  = 0. A by-product of the present analysis is 
to show that this instability is not modified by the gas expansion. But, in fact, 
because of the relatively high value of the corresponding critical Lewis number, Le,, 
such a resonance phenomenon is not easily accessible for ordinary gaseous reactive 
mixtures. The present analysis is limited to cases where Le < Le,. 

P .  Clavin, P .  Pelce‘ and L. He 

The pressure-induced fluctuations of the heat flux are 

The leading order of the acoustic velocity jump across the flame is obtained by a 
space integration (between 6 = - co and 6 = 0-) of the linearized continuity equation 
( 3 . 6 ~ )  which, by using the ideal gas law (3 .6h) ,  can be written as 

( 4 . 9 ~ )  

The result of this integration can be directly obtained from the leading order in the 
asymptotic expansion ( 4 . 3 ~ )  in the form 

(4.9 b )  

and (4.8) and (4.7) lead to the final result which can be written in dimensional form 
as 

( 4 . 1 0 ~ )  

where the transfer function Z(wt) is a complex scalar which is given by 

1. (4.10b) 

The relation (4.9b) shows that, as anticipated a t  the beginning of §2, the velocity 
jump is proportional to the heat flux with a real and positive coefficient. Thus (4.7) 
and (4.8) can be directly used to test the Rayleigh criterion. Instability occurs when 
heat flux and pressure are in phase, i.e. if the real part of the transfer function 2 is 
positive. Notice that in the limit of a small gas expansion used by Van Harten et al. 
(1984) (see the text under (4.7)), the transfer function goes to zero and the driving 
mechanism of the vibratory instability disappears. 

The limiting cases of low and high frequencies of the transfer function correspond 
to 2 = ($M) (C,-C,)/C, and 2 = ($pM) (T,/T,) (C,-Cv)/Gv respectively. The first 
case corresponds to a quasi-stationary modification of the combustion rate by the 
temperature modification produced by the acoustic wave. The real and imaginary 
parts of 2Z/pM are plotted in figure 1 (a) for different values of the Lewis number. 
The driving mechanism of the oscillatory instability appears to become maximum in 

[(I +4iwt)f-  1 1 ( ( 1 + 4 i w ~ ~ ) f - ( p ~ - p ~ ) / p ~  (1 +4iwt)f 
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the region where the acoustic frequency approaches the inverse of the transit time, 
wrt = O( 1).  Moreover, because of the thermaldiffusive resonance phenomenon, the 
maximum intensity of the vibratory instability is found to be amplified for 
sufficiently large Lewis numbers, which correspond to  reactive mixtures with a 
limiting species much heavier than the diluent as, for example, in lean mixtures of 
heavy hydrocarbons in air. 

5. Vibratory flame instability 
5.1. Eigenmode equation in the non-dissipative case 

In a first step, the mean position of the planar flame front is assumed to be kept at 
rest in the laboratory frame by adjusting the mean flow velocity of the incoming 
fresh gases at the laminar flame speed U,. This section is devoted to the stability 
analysis of such a planar flame in the presence of axial acoustic modes of the tube and 
the approximation where viscous effect are neglected. The analysis requires the 
solution of (3.6) in the acoustic regions. These external solutions correspond to the 
acoustic field described in dimensionalized form by the linearized equations (3.1 a,  b) 
in the isentropic approximation to givef 

6P1.2 = k 1 , z e x p  ( iw c1,2 X) +Bl, 2exp (- i z x ) }  c1,2 exp iwt, (5.1 a )  

expiwt, (5.1b) 
P1,2 C l ,  2 

where subscripts 1 and 2 denote the unburned mixture and the burned gases 
respectively. As usual, the constants of integration Al,2 and Bl,2 have to be 
determined by the boundary conditions. As already discussed, the flame including its 
preheated zone appears, a t  the leading order of the external acoustic solutions, as a 
discontinuity separating the fresh mixture from the burned gases. The boundary 
conditions at the mean flame position, chosen a t  the origin of the coordinate (x = 0 ) ,  
result from the inner structure analysis of the previous section. Pressure variations 
can be considered as equal on both sides of the discontinuity and the velocity jump 
is given by ( 4 . 1 0 ~ ) :  

(5.2) 

(5.3) 

&P,(O) = & 3 2 ( 0 )  = 6P(O), 
du2(0) - aul(0) = Z ( W 7 t )  6p(O)/p, cl, 

where the transfer function Z(wr t )  is given by (4.10b). Other boundary conditions 
hold a t  the ends of the tube. For simplicity, we consider in this paper only the case 
of a flame propagating from the open to the closed end of a tube which corresponds 
to the classical experimental situation (see for example Kaskan 1953). Other 
configurations can be investigated by the same method and will be presented 
elsewhere. In  our case, the appropriate boundary conditions are 

closed end in the fresh mixture, 

open end in the burnt gases, 

x = - rL:  6ul = 0, 

x = ( 1 - r ) L :  &p2 = 0. 

(5.4a) 

(5.4b) 

t The effects of non-zero mean flow velocity are negligible because they induce relative frequency 
and phase shifts of order M2 and M respectively. 
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FIQURE 1.  (a )  Variation with frequency of real and imaginary parts of the reduced transfer function 
(4.10b) for different values of Lewis number and for p =  20: A, Le = 0.6; B, 0.8; C, 1 ;  D, 1.2; E, 
1.3; F, 1.4. ( b )  Flame configuration. (c) Eigenmode X, ( r )  solution of (5.6). (d )  Variation with Mach 
number of the non-dimensional growth rate 

for different values of Lewis number and for p = 20, X ,  = 2:  A, Le = 0.6; B, 0.8; C, 1 ; D, 1.2; E, 
1.3; F, 1.4. 
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Such conditions would correspond to the case shown in figure 1 (b)  where the fresh 
mixture flows through a porous plug standing far away from the flame position 
(rL % d) .  

When the constants Al,2 and Bl,2 are eliminated by using the boundary conditions 
(5 .2 ) ,  (5.3) and (5.4), one obtains the following eigenmode equation : 

Here X is the dimensionless frequency X = wr,, T,  = L/c, the characteristic acoustic 
time. By definition, X is of unity but according to  (4.10b), the dimensionless transfer 
function Z is proportional to e = PM whose the characteristic order of magnitude is 

(see (2.4b)). Thus the eigenmodes can be computed from (5 .5 )  by an expansion? 
in E around the free eigenmode X, solutions of 

X ,  are real numbers which characterize the acoustic frequencies of the tube when the 
flame is considered as a passive interface separating two different gaseous media. The 
corresponding eigenmodes are plotted in figure l ( c )  for the first ten harmonics. 
Writing X = X, + S X ,  one obtains a t  the first order in the power expansion of e : 

. (5.7) Re (2) 

r ( 1 + tan2 rx,) + @ ( 1 - r )  2 1 + tan2 ( i - r A X, tan* rx, 
Im (SX) = - 

P1 c1 c (  c2 c2 " 
Instability corresponds to Im ( w )  < 0, i.e. Im ( S X )  < 0. According to (5.7), the 
instability is found to appear when Re (2) > 0, which is in agreement with the 
Rayleigh criterion as formulated a t  the end of $4. Moreover, (4.10b) shows that 
Re (2) is effectively positive at all frequencies (see also figure 1). Thus, the coupling of 
the flame structure with the axial acoustic modes of the tube leads to a natural 
instability mechanism with oscillatory frequencies that are very close to those of the 
tube which are given by (5.6). The instability growth rate as given by (5.7) and 
(4.10b), is in agreement with the result (2.7) of the rough analysis presented in $2 
and it turns out to be a small quantity compared to the natural acoustic frequency 
1/7, Cl/L. 

5.2. Stability limits 

The instability can develop only when the linear growth rate (5.7) is sufficiently large 
to overcome damping effects. Transverse heat conduction and viscous friction at the 
tube walls are unavoidable dissipative phenomena which produce a natural damping 
of the instability. Another damping may be produced by a loss of acoustic energy 
because of sound radiation from the open end of the tube to the external medium. 
The dissipative effects a t  the tube walls involve transverse variations of the acoustic 
field which cannot be described by the one-dimensional model used in the previous 
part. In  the absence of flame, the two-dimensional dissipation mechanisms of viscous 
friction and heat conduction to  the tube walls were computed a long time ago by 
Kirchhoff for axial acoustic waves in a cylindrical tube of circular section (see pp. 319 
and 323 of Rayleigh 1945). When the tube radius is large compared to the thickness 

t Notice that if PM had been scaled to be small from the beginning no additional term would be 
introduced in (3.6) and (3.7). Result (4.7) and (5.5) remain valid in the limit PM+O. 
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of the boundary layer h x ( v /w) i ,  the acoustic fields in the bulk of the tube take a 
similar form to (5 .1) ,  but with additional damping terms (see p. 326 of Rayleigh 
1945) : 

( 5 . 8 ~ )  6 ~ , , 2  = { 4 , 2 e x p  ( n 1 . 2 ~ )  +B1,,exp ( - n 1 , 2 4  expiwt, 

At the open end of the tube ( x  = (1 - r )  L ) ,  radiation of acoustic waves in the free 
atmosphere leads to the following boundary condition (Rayleigh 1945) which has to 
replace (5.4b) : 

6p2 = K,p2 c2 6u2 with K ,  = (w2R2/2ci + 8iwR/3nc2), (5.9) 

where URIC2 is assumed a small number. 
According to the order of magnitude estimates presented in (2.9) and (2.10), Re 

(K,) = O(R2/L2) ,  Im (K2)2 = O(R2/L2) ,  Im (4,) = O((DTT,)i/R) and 121 = O(pM) have 
to be considered a t  this stage of the analysis as small quantities of the same order of 
magnitude. The analysis of the stability limits may be carried out as in the previous 
section with the boundary conditions (5.2) and (5.3) a t  the flame front. An eigenmode 
equation follows, similar to (5 .5)  but where viscous and radiation terms are 
introduced as small perturbations. Thus eigenmodes may be computed by an 
expansion around the free eigenmode X ,  solutions of (5 .6) ,  to give 

Im (6x1 [ r { i  + tan2 (rx,)) + ( 1  - r )  
P1 

= - Re ( Z ) ( X ,  ~~17,) - Im (#l){rXo( 1 + tan2 (rX,)) +tan (rX,)}  

+ Re (K,) !!!-!? { 1 + ($$) tan2 (rX,)}  . 
PZ c2 

( 5 . 1 0 ~ )  

According to ( 5 . 8 ~ )  and (5 .9) ,  Im (g51,2) < 0 and Re (K,)  > 0. Moreover, the coefficients 
{ f of Im ($1,2) and of Re ( K 2 )  in the above equation are positive. The second, third 
and fourth terms in the right-hand side of ( 5 . 1 0 ~ )  yield a positive contribution to 
Im ( S X )  corresponding to  damping mechanisms associated with viscous friction, heat 
transfer a t  the walls and energy loss by sound radiation at  the open end of the tube. 

The stability limits of the flame in the tube are obtained from (5.10a) by setting 
Im (6X) = 0. I n  the presentation of the results, we have chosen to vary the following 
three parameters: the Mach number M ,  the Lewis number Le, and the aspect ratio 
R / L  of the tube. Two values of the length of the tube are considered: L = 1 m and 
L = 0.1 m. The other parameters are ke t fixed: c1 = 330 m/s, D ,  = 0.15 lo-* m2/s, 
p = 20, %/TI = p1/p2 = 5 ,  D2/Dl = 55, c2/c l  = 4 5 ,  (C,-Cv)/Cv = I. All the 
quantities in (5.10a), such as Im (q51,2) and Re (K,)  defined as ( 5 . 8 ~ )  and (5.9), have 
to be rewritten by using w = X,c l /L ,  

- Im ( $ 1 ,  2) = (Dl,  2/2c, L) i  (R/L)- l  Xi;, 

P 

(5.10b) 

11 FLM 218 
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FIGURE 2. (a)  Stability limits of the fundamental mode in the presence of loss by sound radiation. 
L = 1 m, p =  20, Le = 1, R / L  = 0.01 and 0.05. ( b )  Stability limits of the second harmonic for the 
same conditions as in (a) .  
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where the value of the bracket { } in ( 5 . 8 ~ )  has been taken equal to  d 2  for simplicity, 

Re (K , )  = 2 . 5 ( R / L ) 2 X i .  ( 5 . 1 0 ~ )  

In a similar way, using (3 .2) ,  the time ratio rt/ra in the argument of the transfer 
function appearing on the right-hand side of (5.10a), has to  be expressed in the form 

(5.10d) 

in which L has to be expressed in metres. Then, one determines the stability limits 
for the plane Mach number M us. relative flame position r ,  as follows: for a given 
value of r,  one determines the first zero X, of (5.6) (see figure 1 c )  and then from (5.10) 
one determines the Mach number M for which Im(6X) vanishes. The instability 
appears when the reduced growth rate Re(2)  is sufficiently large to balance the 
damping terms whose the amplitude are not Mach-number dependent (see (5.10b, c ) ) .  
The dependence on the Mach number of the reduced growth rate is plotted in figure 
1 (d) for different values of the Lewis number and for two typical values of the length 
of the tube, L = 1 m and L = 0.1 m. In these figures, X, has been chosen fixed at  a 
typical value X, = 2 of the first acoustic mode of the tube (see figure 1 c ) .  In the range 
of accessible Mach numbers for premixed flames, M < 2 x one can see a peak 
value of the growth rate which corresponds to the proximity of a resonance 
phenomenon with the thermal-diffusive instability of the flame structure cor- 
responding to a critical Lewis number Le, defined by P(Le, - 1) = 4( 1 + 4 3 )  x 10.93 
(see $4.2). As a result of the L-dependence of ~7~ (see (5.10d)), the corresponding peak 
is more pronounced for short tubes (see figure ld) .  

The stability limits of the fundamental mode are plotted in figure 2 (a )  for a tube 
length L = 1 m, a Lewis number Le = 1 and for different values of R/L. Instability 
is found to  occur in the second half of the tube since the strength of the instability 
is maximum at an antinode of pressure, which is the case a t  the close end of the tube. 
Critical values of the Mach number being relatively high, of order 0.01, the 
corresponding values of rt/r, are, according to (5.10d), much smaller than unity. As 
a result, only the low-frequency limit of the transfer function is involved (see figure 
1 a) .  According to the results plotted in figure 1 (d), lower critical values of the Mach 
number and a stronger instability can be expected to occur in shorter tubes. The 
stability limits of the fundamental mode are plotted on figure 3 for a tube length ten 
times shorter, L = 0.1 m, and for two values of the Lewis number, Le = 1 (figure 3a)  
and Le = 1.4 (figure 3b)  and when, in addition, energy loss by sound radiation has 
been suppressed. One may notice in this last case an island of strong instability at 
small Mach number (M x 0.001) corresponding to the maximum value of the real 
part of the transfer function. We shall come back to this phenomenon in the following 
section. For comparison, the stability limits of the first harmonic are plotted in 
figures 2 (b )  and 3 (b ) .  

5.3. Flames propagating in tubes 
Consider now the case where the flame propagates a t  constant velocity from the 
opened to the closed end of the tube a t  small Mach number in a quiescent reactive 
mixture. For each relative position r ( t )  of the flame, the imaginary part of the 
eigenmodes are determined adiabatically by relation ( 5 . 1 0 ~ ) .  Let the total growth of 
an initial perturbation be characterized by r defined as : exp r = A,/A,,  where A ,  and 
A, are the final and initial amplitude of the perturbation. Because of the large 
difference in timescales (/IN w between the acoustic vibration frequency and 

11-2 
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FIQURE 3. (a) Stability limits of the fundamental mode without loss by sound radiation (K,  = 0). 
L = 10 cm, /j = 20, Le = 1, R / L  = 0.1, 0.2 and 0.3. ( b )  Stability limits without loss by sound 
radiation ( K ,  = 0). L = 10 cm, p = 20, Le = 1.4, R = 2 cm. -, fundamental mode; -----, 
second harmonic. 
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the growth rate of the vibratory instability, the total growth between the initial and 
final times ti and t ,  may be computed by an ‘adiabatic approximation’ in the form 

or 

r=-  r I m ( w ) d t  
J ti 

r = - Im (SX) dr, x; 
( 5 . 1 1 ~ )  

(5.11b) 

where Ti, = - ( U J L )  t i ,  f .  

Consider first the large-Mach-number limit of I‘, for which damping mechanisms 
in (5.10) are negligible, and where T J T ,  = (Dz /c lL)  (pz/p1)2M-2 is close to zero, which 
corresponds to a quasi-static approximation for the flame structure. Then, according 
to (4 .10b) ,  ( 5 . 1 0 ~ )  and (5 .11b) ,  f i s  given by 

dr  

(5.12) 

This relation shows that r i s  a number of order /3 as mentioned in $2 (see (2 .8) ) .  This 
is the main result of the paper. The coupling between the acoustic field and the free 
flame propagation, through the effects on the burning velocity of the pressure- 
induced temperature variations, can lead to an observable instability. The order of 
magnitude of the coupling constant, PM, is small (typically but, when the 
corresponding small instantaneous growth rate is integrated on the long residence 
time (t,,, x T, /M)  that the flame takes to  propagate on a distance of the acoustic 
wavelength, the total growth of an initial perturbation may be very large in the limit 

But, from a quantitative point of view, by noticing that for rf = 0 and ri = 0.5 and 
1 ,  the value of the integral in (5.12) is 0.309 and 0.322 respectively, the numerical 
coefficient in front of /3 in the expression of r turns out to be of the order of 0.1. Thus, 
for large Mach numbers, the resulting numerical values of r( x P/lO) yields a total 
growth, exp r, which is not actually large for typical values of the reduced activation 
energy (10 d P < 20) .  In  this case where the flame responds in a quasi-steady 
manner, the vibratory instability mechanism leads to a weak effect. 

As mentioned in the previous section, a strong vibratory instability may appear a t  
sufficiently small Mach number for which T ~ / T ,  = O(1) and when the resonance 
phenomena described in figures 1 ( a )  and 1 ( d )  is involved in the unsteady response of 
the flame structure. In  the simplified flame model used here, this is the case for Lewis 
numbers sufficiently large P(Le- 1) 2 6 .  

For example, the numerical values of r corresponding respectively to the 
instability domains of figures 2 (a)  and 3 ( b )  are plotted from (5.11 b)  as a function of 
the Mach number in figures 4 ( a )  and 4 ( b ) .  The corresponding total amplification, exp 
r, is found to be almost negligible in the first case and can be very large in the second 
one in a relatively thin window of low Mach numbers. Thus, such strong vibratory 
instabilities appear to be very sensitive to the parameters, and are expected to occur 
only for particular reactive mixtures. Nevertheless, similar phenomena have already 
been reported in the numerical simulation (Kooker 1979) of ozone Aames propagating 
in short tubes. 

Let Ai be the initial amplitude of an initial acoustic disturbance which may be 

/3+ Go. 
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FIGURE 4. (a) Total growth rate for the same conditions as in figure Z(a)  with R/L = 0.05. (b )  Total 
growth rate for the same conditions as in figure 3 ( b ) .  -, fundamental mode; ----- , second 
harmonic. 

produced for example by the ignition process. The criterion defining the instability 
threshold is given by a final amplitude of the disturbance reaching a prescribed 
observable value of order unity in an appropriate system of unity. As A, z Ai exp r, 
i t  follows that the instability threshold corresponds to r NN -logA,. This criterion is 
similar to the one determined for the stability of a curved flame (Zel’dovich et ul. 



Vibratory instability of planar flames propagating in tubes 32 1 

1980). In  this later problem, the basic instability is the Darrieus-Landau 
hydrodynamic instability, the perturbations being advected by the tangential 
velocity field along the curved flame. The combination of these effects leads to total 
growth r proportional to the Reynolds number, which in some experiments can be 
large. Here, the basic instability is the thermoacoustic instability, whose growth 
rate, integrated on the residence time, leads to a total growth r proportional to the 
Zel’dovich number p, which is large. 

6. Conclusions 
In  this paper we have provided a detailed study of a possible mechanism for the 

vibratory instability of a flame propagating in a tube. The driving mechanism results 
from the interaction between temperature variation in an acoustic wave and flame 
structure. The order of magnitude of the coupling constant is small, PM x but 
when integrated on the residential time, t,,, w 7,/M, that the flame takes to 
propagate in the tube, the final amplification exp r of an initial perturbation can be 
very large because the Mach number disappears from the expression for r, which is 
found to be proportional to p. For sufficiently large Mach numbers, M the 
flame responds in a quasi-steady approximation rt < 7,. In such cases, the numerical 
value of the proportionality coefficient which involves the specific heats of the 
reactive mixture and a global characteristic of the excited acoustic mode of the tube, 
is found from (5.12) to be small, of order 10-l. Thus, in this case, the present 
instability mechanism does not lead to noticeable effects for typical values of the 
reduced activation energy (10 < ,8 < 20). A strong vibratory instability is predicted 
to appear at sufficiently small Mach numbers, M w lop3, for which 7J7, = O(1) and 
when a resonance phenomenon with the thermal-diffusive mechanisms is involved in 
the response of the flame structure. In the simplified flame model used here, this is 
the case for Lewis numbers sufficiently large, P(Le- 1) 2 6, which is representative 
of some lean mixtures of heavy hydrocarbons. In  this case, islands of strong 
vibratory instability are predicted to appear in well-defined ranges of Mach numbers. 
A natural extension of this work would be to investigate the transfer of more 
complex flame models, including the effects of realistic chemical kinetics, to check 
the existence of such a strong vibratory instability for real flames. 

Another important problem which remains is to evaluate the relative importance 
of all the possible mechanisms which can lead to a vibratory flame instability. As 
already mentioned in the introduction, two other mechanisms are possible. As 
suggested by Kaskan (1953), fluctuations of the heat released may result from the 
penetration of the flame edges into the acoustic boundary layers. As proposed by 
Markstein (1964), heat flux variations may also result from the variation of flame 
area by acceleration instability leading to unsteady cellular structures. Unfor- 
tunately, an accurate calculation of the transfer functions and of the stability 
limits of these last two mechanisms have not yet been carried out. By providing a 
detailed analysis of one of the possible mechanisms, the results presented in this 
paper appear as a contribution in the understanding of these vibratory instabilities. 
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